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Scaling relationship between effective critical exponents
throughout the crossover region in thin Ising films
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Abstract. The Monte Carlo (MC) approach is used to check the validity of the scaling relationship γ =
β(δ − 1) for the effective critical exponents in thin Ising films. We investigate this relationship not just
in the critical region but throughout the crossover to the expected two-dimensional behavior. Our results
indicate that this scaling relationship is very well-fulfilled throughout the entire crossover temperature
region, as predicted by a previous renormalization group analysis. The two-dimensional universality class
of Ising films is confirmed by means of data collapsing plots for L × L ×D plates with increasing L, up
to L = 100. The evolution of the maximum value of the effective critical exponents with film thickness is
discussed.

PACS. 75.10.Hk Classical spin models – 64.60.Fr Equilibrium properties near critical points, critical
exponents – 75.70.-i Magnetic films and multilayers

1 Introduction

Ising films with geometry L × L × D (L � D) have
been extensively studied for some years using the MC
approach [1–3]. More recently the crossover to two-
dimensional behavior in thin films has been also inves-
tigated. The main idea is that, as the temperature on the
system grows from 0 K, the correlation length takes note
eventually that the Ising film is in fact a two-dimensional
system. Then the crossover to two dimensional critical be-
havior begins.

This crossover was considered a long time ago using
series expansions techniques [4]. More recently this dimen-
sional crossover has been investigated by means of MC cal-
culations in Ising systems [5], as well as in XY -models [6].

On the other hand, the possibility to produce exper-
imentally thin magnetic films made it possible to carry
out comparison with the crossover observed in ferromag-
nets with a few monolayers in thickness [7,8].

From the theoretical point of view O’Connor and
coworkers [9] have calculated analytical expressions for ef-
fective critical exponents in systems with film geometry
using an “environment friendly” renormalization group
analysis. They predict that scaling relations hold for the
D dependent effective critical exponents over the entire
crossover region.

Up to now, as far as we know, no MC numerical sim-
ulation at the crossover region for thin Ising films has
been performed in order to check the scaling prediction
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by O’Connor et al. [9]. The problem appears to be that
the explicit calculation of the effective critical exponent
αeff(T ) is non trivial, while βeff(T ) and γeff(T ) can be eas-
ily calculated from M(T ) and χ(T ), respectively.

We take advantage of the fact that another scaling re-
lation at the crossover region can be alternatively checked,
looking at another exponent, δeff(T ), for which only data
for M(H) at T = Tc (critical isotherm) are needed.

In the present work we perform MC calculations of
βeff, γeff and δeff, for Ising films of various thicknesses
(D) through the crossover region, and we show that, by
an appropriate re-scaling between the variables (H) and
t = (Tc − T ), the relationship γeff = βeff(δeff − 1) is well
fulfilled over the entire crossover region. We also present
data collapsing at a constant value of D for different val-
ues of L, showing, for the first time with MC data, that
the scaling is excellent with the two-dimensional critical
exponents approaching the critical point, but that it is
spoiled at the crossover region, where the effective expo-
nents become clearly different from the two-dimensional
ones.

One difference between our calculation and those in
previous work is that, in order to get rid of surface ef-
fects [4], we introduce periodic boundary conditions in all
directions. So our system may be considered as one with
anisotropic geometry [10–12], due to the marked difference
between D and L. Our MC calculation shows that no spe-
cific surface effects are needed in order to observe crossover
to the two-dimensional regime, in contrast with systems
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previously investigated using free surfaces perpendicular
to the films.

2 Numerical results

Determination of M(T ), χ(T ) and M(H) were performed
by Monte Carlo calculations using a length for the Monte
Carlo runs of about 50 000 MCS. We have used a mixed
Metropolis/Wolff single cluster algorithm [13] in order
to decrease critical slowing down effects near the criti-
cal point. The L values considered were 10, 20, 40 and
100, and the D values 3, 5 and 7. The effective exponent
numerical values were directly obtained from the raw MC
data using the definitions:

βeff ≡ ∂ logM/∂ log t, 1/δeff ≡ ∂ logM/∂ logH,
and γeff ≡ ∂ logχ/∂ log t.

In order to have enough accuracy, we need to calculate in
very small steps (for field and temperature) near the crit-
ical point. Small steps imply that the derivatives, calcu-
lated numerically, contain relatively large errors. To avoid
this problem, we just smooth out our data calculating the
derivatives with larger steps (±5 data points). In fact, we
have used small (±1 data points), intermediate (±3 data
points) and relative large steps (±5 data points), and we
have checked that with (±5 data points) the errors are
minimized, without averaging too much. With this proce-
dure we still have many experimental points at very closely
spaced temperatures (fields) near the critical point for the
derivatives giving βeff, γeff, and 1/δeff. We have checked
that this procedure is meaningful for β and 1/δ in the pure
two-dimensional and three-dimensional cases. To improve
our accuracy we use “early thermalization”. This means
that we start at T ≈ 0, M ≈ 1. At this point, the system
is obviously in equilibrium. Proceeding by small steps we
expect that, without spending too much calculation time,
the system is kept close to equilibrium all the way to the
critical point.

The critical temperatures for the different film thick-
nesses were determined in the usual way, by means of the
Binder cumulant method UL [14,15], using different lat-
eral film sizes. In all cases the Binder cumulant value at
the critical temperature comes out very close to the two-
dimensional Ising value, which is consistent with the idea
that thin films must be in the same university class that
two-dimensional Ising systems [5].

Figure 1 presents the calculated values of βeff vs.
log(Tc−T ) and δeff vs. log(H) for different values of D and
L = 100. There are clearly three different zones. A first
zone corresponds to the interval of temperatures where the
correlation length is not large enough to detect the finite
thickness of the film. In this zone the correlation length
increases and the effective critical exponents grow towards
the three-dimensional value. The second zone starts at a
temperature (field) where the correlation length is large
enough to note that the system is really a thin film. The
effective critical exponents cannot grow anymore, and the
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Fig. 1. (a) βeff vs. log(Tc−T ) and (b) 1/δeff vs. log(H) for L×
L×D Ising films with L = 100 and D = 3, 5, 7. Straight lines
correspond to the three- and two-dimensional critical exponent
values. Doted lines indicate the maximum value of the effective
critical exponent for the Ising films.

crossover to the two-dimensional values begins. Note that
the maximum value of βeff depends on D. This may be un-
derstood taking into account that for larger D values the
system must rise to higher values of ξ (correlation length)
in order to initiate the crossover. For all the values of D
considered in this work the effective critical exponents do
not rise up to the three-dimensional values, due to the
small (D) values used [4]. Finally we arrive to the third
zone. This is the zone where finite size effects begin to
dominate. For larger values of L this zone will begin at
higher temperatures (or lower fields). As far as we known
this is the first time crossover effects in (1/δ) have been
numerically determined.

The finite size dependence on L is checked in Figure 2,
where βeff vs. log(Tc−T ) is represented for different values
of L and for a constant value of D = 5. Note how the
crossover zone starts always at the same place, due to the
constant value of D, but finite size effects start at different
temperatures depending on the value of L.

The (more complete) data in Figure 2 show clearly
the region where finite size effects become too important,
and spoil the numerical value of β, as indicated by the
fact that the effective exponent drops clearly below the β
(two-dimensional) value as we approach the critical point.
This behavior becomes even clearer for L = 100.
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Fig. 2. βeff vs. log(Tc − T ) for L × L × D Ising films with
D = 5 and L = 20, 40, 100. Straight lines corresponds to the
three- and two-dimensional critical exponent values. Arrows
indicate the points at which finite size effects start for each L
value.
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Fig. 3. γeff vs. log(Tc − T ) for L × L × D Ising films with
L = 100 and D = 3, 5, 7. Straight lines corresponds to the
three- and two-dimensional γ values.

The same analysis can be done for the susceptibility.
Figure 3 represents γeff vs. log(Tc − T ) for L = 100 and
D = 3, 5, 7. Again, we find three zones, for the same rea-
sons as above. The behavior is not exactly the same as in
the previous case. We can see that the three-dimensional
critical exponent value is reached even with the small value
D = 5. Of course this continues to happen with higher D
values, but, in contrast to what was seen in Figure 3a of
reference [5], no decrease of γeff at the beginning of the
crossover region is observed. This decrease in γeff is pre-
sumably due to surface effects [4]. Since we are taking
full periodic boundary conditions in every direction, it is
normal that the decrease in γeff is smoothed.

Once we know βeff(T ) and γeff(T ) for a constant value
of D, (for example D = 5), we are able to calculate δeff

using the scaling relation δ = (γ/β) + 1 over the entire
crossover region. Reference [9] predicts, using renormal-
ization group arguments, that this scaling relation should
hold over the whole crossover region. In order to check this
prediction we use numerical MC simulations of δeff(H) in
this zone, and we compare the results so obtained with
the ones determined from the scaling relationship.

The independent variable is in one case the magnetic
field, δeff(H), and the temperature in the other, δeff(T ). So
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Fig. 4. 1/δeff vs. log(H) obtained by MC data (open circles)
and 1/δeff vs. log(Tc − T ) obtained by means of the pertinent
scaling relation (full line) for L = 100 and D = 5.

the effective critical exponent is not expressed in terms of
the same variable in both cases. However both variables
can be easily re-scaled visually as shown below.

Figure 4 represents 1/δeff (obtained from the scaling
relation) vs. log(Tc − T ) and 1/δeff (obtained directly by
MC calculations) vs. log(H), both for the case of D = 5
and L = 100. We choose L = 100 in order to have a
large enough crossover zone to check the scaling relation-
ship. Note that the coincidence between both results is
excellent. An important point to observe is that the scal-
ing relationship holds not only at the crossover region,
but also well before it. That is, at lower temperatures or
higher fields. To check hyperscaling (ν = β(δ+ 1)/d, with
d the system dimension) and other scaling relations (e.g.
α = 2 − 2β − γ) the correlation length and the specific
heat are needed.

Since the crossover of the effective critical exponents to
the two-dimensional values is clearly seen in Figures 1, 2, 3
and 4, one would expect to find data collapsing near
the critical point when plotting MLβ/ν vs. |ε|L1/ν , ε =
(Tc − T )/Tc for a fixed value of D = 5, with different
values of L, using the two-dimensional Ising critical ex-
ponents. This data collapsing are shown in Figure 5a.
This result clearly indicates that Ising films belong to the
two-dimensional Ising university class as expected. It is
well known that scaling only holds well relatively close to
the critical point. In addition the scaling region becomes
shorter for Ising films (D = 5 in the case of Fig. 5a),
a fact directly related to the occurrence of crossover in
the exponents from effective toward pure two-dimensional
(d = 2) exponents. In Figure 5b we have plotted also the
same data using three-dimensional critical exponents, in
this case scaling is completely spoiled.

Figures 5a and 5b clearly prove that thin Ising films
show the same critical behavior than the pure two-
dimensional Ising system. However, the behavior of the
effective exponents is not two-dimensional. The pure two-
and three-dimensional systems do not show, of course, lo-
cal maxima of βeff and 1/δeff at a certain temperature
(field) below the critical point. In other words, they always
increase monotonously towards their asymptotic values.
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Fig. 5. Data collapsing plot for Ising films with D = 5 and
L = 10, 20, 40, 100 with (a) two-dimensional critical exponents,
and (b) three-dimensional critical exponents.
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Fig. 6. 1/δm vs. βm for the pure one-, two-, three- and four-
dimensional Ising systems (black circles) and for Ising films
L× L×D with L = 100 and D = 3, 5, 7, 20, the last from ref-
erence [5], (open circles). The cross indicates the point interpo-
lated between d = 2 and d = 4, with coordinates (5/16, 1/5).

Systems with film geometry, however, present maxima of
the effective critical exponents (βm and 1/δm) which lay
between the values corresponding to the two-dimensional
and three-dimensional Ising systems. This is seen for βeff

and 1/δeff in Figure 1. In order to show the evolution
of the maximum value for the effective critical exponents
we present in Figure 6 (1/δ)m vs. βm for the pure one-,

two-, three-, and four-dimensional Ising systems, together
with the effective values obtained with Ising thin films of
D = 3, 5, 7, 20 (the last value is estimated from Ref. [5]).

In order to avoid problems coming from a possible
wrong interpretation of a single local absolute maximum
of the effective critical exponent 1/δeff we have developed
statistics of 40 points around the maximum. With this
provision we get values with errors that are somewhat
smaller than 5%. The same analysis has been performed
for βeff. In this case, however, the number of available
points is smaller and the statistics perhaps less represen-
tative.

Note that the evolution of the pure systems is linear.
For Ising films the points depart somewhat from perfect
linearily. The overall behavior is unmistakably consistent,
indicating that the maximum effective critical exponents
(for plates with D = 3, 5, 7, 20) while meaningful only
over a limited range of temperature away from the critical
point, approach gradually the straight line defined by the
pure exponents.

As noted (1/δ) vs. (β) values for the three-dimensional
(d = 3) Ising systems fall perfectly in line with the ex-
actly known points for d = 2 and d = 4. In addition,
a cross marks the (1/δ) and (β) point corresponding to
{[1/δ(d = 2)] + [1/δ(d = 4)]}/2 and {β(d = 2) + β(d =
4)}/2 which gives exactly 1/δ = 1/5 and β = 5/16, very
close to the best estimates of 1/δ(d = 3) = 0.208 9 and
β(d = 3) = 0.326 7 [16]. Recent studies have gone to much
higher values of D (D = 48) for systems in the same uni-
versality class as the Ising model [17].

3 Conclusions

To conclude, we presented MC simulations for the evo-
lution of the effective critical exponents βeff, γeff and δeff

in thin Ising films with different thicknesses D. We clearly
recognize three zones: a first one corresponding to low tem-
peratures where the finite thickness of the system is not
yet felt, a second one corresponding to the crossover to-
wards the two-dimensional values, and a final third zone
where finite size effects take over. We also show that the
scaling relation γ = β(δ − 1) holds well, not just in the
critical region, but also over the whole crossover zone and
before it. We presented data collapsing plots for Ising
films using two-dimensional values of the critical expo-
nents. Our data neatly show that the asymptotic behavior
is clearly governed by the two-dimensional fixed point for
Ising films. Finally, we depicted the evolution of the max-
imum effective critical exponents 1/δm vs. βm for different
thicknesses. This evolution approaches a linear behavior
towards the line going from d = 2 to d = 4 using our data
and other data in the literature.
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